I want to prove that grammar $$ \begin{cases} S'\rightarrow S\\ S\rightarrow aSb ~|~ A\\ A\rightarrow bA~|~b \end{cases} $$ isn't $LR(1)$. I've constructed parser table and got Shift-Reduce conflict.
I want to prove that without parser table, using another $LR(1)$ definition.
Here's definition: Grammar is $LR(1)$, if from
- $S' \Rightarrow^*_r uAw \Rightarrow_r uvw$
- $S' \Rightarrow^*_r zBx \Rightarrow_r uvy$
- $FIRST(w) = FIRST(y)$
$\Rightarrow uAy=zBx.$
So how can prove that?
Asked By : Alvar
Answered By : wece
$$S'\Rightarrow^*\underbrace{ab}_uA\underbrace{b}_w\Rightarrow \underbrace{ab}_u\underbrace{b}_v\underbrace{b}_w$$
$$S'\Rightarrow^*\underbrace{abbbb}_zA\underbrace{b}_x\Rightarrow \underbrace{ab}_u\underbrace{b}_v\underbrace{bbbb}_y$$
$$FIRST(w)=FIRST(y)=b$$ But: $$abAbbbb=uAy\neq zBx=abbbbAb$$
Best Answer from StackOverflow
Question Source : http://cs.stackexchange.com/questions/12470
0 comments:
Post a Comment
Let us know your responses and feedback