A path is simple if it repeats no vertices. How many simple paths between two vertices in Complete graph?
One way is listing the simple paths is to use depth-first search. but i think it should be simple to find the number of all path between 2 nodes in Complete graph.
Here is same problem but mine is for Complete graph: Algorithm that finds the number of simple paths from $s$ to $t$ in $G$
Asked By : Ali
Answered By : Ali
$c(1)=0,$
$c(n)=(n-2)*c(n-1)+1$
suppose we have c(n-1) path in (n-1)-Complete Graph. when we add one more vertices, we add $(n-2)*c(n-1)$ new path and one for directed path.
the result is same as real:
- 0
- 1
- 2
- 5
- 16
65
===============================EDITED
$c(n)=\sum_{i=0}^{n-2} \frac{(n-2)!}{i!}=(n-2)!*\sum_{i=0}^{n-2}\frac{1}{i!}$
.
This shows that's about $(2\text{≈}3)*(n-2)!$
Best Answer from StackOverflow
Question Source : http://cs.stackexchange.com/questions/29558
0 comments:
Post a Comment
Let us know your responses and feedback