World's most popular travel blog for travel bloggers.

Please download the attachment

Please download the attachment

We will upload all assignment of MCA2 before 28th march

We will upload all assignment of MCA2 before 28th march

MCS013 - Assignment 8(d)




A function is onto if and only if for every y in the codomain, there is an x in the domain such that f(x)=y.
So in the example you give, f:RR,f(x)=5x+2, the domain and codomain are the same set: R. Since, for every real number yR, there is an xR such that f(x)=y, the function is onto. The example you include shows an explicit way to determine which x maps to a particular y, by solving for x in terms of y. That way, we can pick any y, solve for f(y)=x, and know the value of x which the original function maps to that y.
Side note:
Note that f(y)=f1(x) when we swap variables. We are guaranteed that every function f that is onto and one-to-one has an inverse f1, a function such that f(f1(x))=f1(f(x))=x.

MCS013 - Assignment 8(d)




A function is onto if and only if for every y in the codomain, there is an x in the domain such that f(x)=y.
So in the example you give, f:RR,f(x)=5x+2, the domain and codomain are the same set: R. Since, for every real number yR, there is an xR such that f(x)=y, the function is onto. The example you include shows an explicit way to determine which x maps to a particular y, by solving for x in terms of y. That way, we can pick any y, solve for f(y)=x, and know the value of x which the original function maps to that y.
Side note:
Note that f(y)=f1(x) when we swap variables. We are guaranteed that every function f that is onto and one-to-one has an inverse f1, a function such that f(f1(x))=f1(f(x))=x.