World's most popular travel blog for travel bloggers.

Understanding Amdahl's Law calculation

, , No Comments
Problem Detail: 

I have a homework problem: Calculate the overall speedup of a system that spends 40% of its time in calculations with a processor upgrade that provides for 100% greater throughput.

Which is a pretty straightforward calculation with Amdahl's Law

$S = \frac{1}{(1-f)+(\frac{f}{k})} $

$f$ = fraction of work performed by component = .40

$k$ = the speedup of new component = 1.00

$S$ = overall system speedup

Plugging in my values I get

$S = \frac{1}{(1-.4)+(\frac{.4}{1})} $

$S = 1 $

Which from my understanding mean's there is no speed up in the system. I am unsure if my calculation is wrong or my understanding of Amdahl's Law because I would think this processor upgrade would've provided at least some system speedup.

My book gives an example where $S = 1.22$ means a $22\%$ increase in speed so I think I am interpreting the answer correctly, which implies I did my calculation wrong, but that also seems correct.

Asked By : kalenpw
Answered By : Raphael

"100% greater throughput" means a (local) speed-up by factor $k=2$.

Best Answer from StackOverflow

Question Source :

3200 people like this

 Download Related Notes/Documents


Post a Comment

Let us know your responses and feedback